SolarPowered LED Lamp Tracks Your Homes Energy Use

first_img In Sweden, the government is responding to the energy crisis by installing smart meters in future homes, which will provide real-time feedback of energy use on the Internet. Homeowners are encouraged to set monthly energy goals in terms of money and/or watts. They can log into their online accounts to view their home´s data and find tips on energy conservation.But realizing that visiting a Web site isn’t the most engaging way to view this data, Ng developed the Spark Lamp to enhance the experience by extending the feedback beyond the computer screen and into everyday objects in the home. The lamp concept itself is engaging and simple: during the day, you turn the lamp upside down on a windowsill to recharge the solar panels. When turned over, the lamp looks a bit like a small potted plant. At night, when you turn the lamp upright and switch it on, the lamp (equipped with Wi-Fi) flickers in different colors to signal your home´s power consumption level for the month compared to your goal. The lamp pulses for about three seconds, displaying green if you´re doing better than your goal, yellow if you´re on target, and red if you´re using too much power. Then the lamp returns to a regular white light lamp. The Spark Lamp is not yet available for purchase.via: Design Zen Explore further Citation: Solar-Powered LED Lamp Tracks Your Home’s Energy Use (2008, September 11) retrieved 18 August 2019 from https://phys.org/news/2008-09-solar-powered-lamp-tracks-home-energy.html The Spark Lamp was designed in response to the Swedish government´s plan to install smart meters in new homes to track energy consumption. Designer Beverly Ng created the solar-powered LED Spark Lamp as a decorative way to reduce energy consumption – but, perhaps more importantly, to let homeowners know of their daily energy use. Do white LEDs disrupt our biological clocks? This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.last_img read more

Using platinummolybdenum carbide to catalytically release hydrogen to power a fuel cell

first_img Explore further Citation: Using platinum-molybdenum carbide to catalytically release hydrogen to power a fuel cell (2017, March 31) retrieved 18 August 2019 from https://phys.org/news/2017-03-platinum-molybdenum-carbide-catalytically-hydrogen-power.html As the planet continues to heat up, scientists around the world seek ways to power automobiles in a way that are as economical as gasoline. Such efforts have led to electric vehicles, hybrids, cars and trucks running on natural gas, ethanol and other fuels, and of course, the ever-elusive hydrogen fuel cell. In this new effort, the researchers suggest they may finally have found a way to make the last option viable.Currently, there are a number of ways to obtain hydrogen for use in fuel cells, but thus far, none of them have proved economical enough to supplant the use of gasoline as the primary fuel for automobiles around the globe. In this new effort, the researchers suggest they may have come up with a process that could make hydrogen fuel cell vehicles more practical.The process involves using a new catalyst, platinum–molybdenum carbide, to drive a reaction that results in the production of H2 and releases carbon dioxide. The team reports that the process can be done at temperatures from 150 to 190 C° and avoids the use of caustic materials. They claim it is five times as efficient as other techniques that use methanol. They also claim that a car with a 50 liter tank of methanol and just six to 10 grams of their catalyst could power a Toyota Mirai for approximately 690 km. Also, it would cost just $15 for the methanol and $320 for the platinum, which the team suggests, might be recyclable.The group acknowledges that a process that releases carbon dioxide is not ideal, but note that many hydrogen-producing industrial processes do so, as well. They acknowledge that platinum is extremely expensive, but point out that current catalytic converters have approximately one to four grams of recyclable noble metals that could conceivably provide a source. (Phys.org)—A team of researchers from several institutions in China and the U.S. has developed a way to use platinum–molybdenum carbide to catalytically release hydrogen from methanol and water to power a hydrogen fuel cell. In their paper published in the journal Nature, the team describes the new method to produce hydrogen for possible use in a fuel cell. This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only. More information: Lili Lin et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts, Nature (2017). DOI: 10.1038/nature21672AbstractPolymer electrolyte membrane fuel cells (PEMFCs) running on hydrogen are attractive alternative power supplies for a range of applications1, 2, 3, with in situ release of the required hydrogen from a stable liquid offering one way of ensuring its safe storage and transportation4, 5 before use. The use of methanol is particularly interesting in this regard, because it is inexpensive and can reform itself with water to release hydrogen with a high gravimetric density of 18.8 per cent by weight. But traditional reforming of methanol steam operates at relatively high temperatures (200–350 degrees Celsius)6, 7, 8, so the focus for vehicle and portable PEMFC applications9 has been on aqueous-phase reforming of methanol (APRM). This method requires less energy, and the simpler and more compact device design allows direct integration into PEMFC stacks10, 11. There remains, however, the need for an efficient APRM catalyst. Here we report that platinum (Pt) atomically dispersed on α-molybdenum carbide (α-MoC) enables low-temperature (150–190 degrees Celsius), base-free hydrogen production through APRM, with an average turnover frequency reaching 18,046 moles of hydrogen per mole of platinum per hour. We attribute this exceptional hydrogen production—which far exceeds that of previously reported low-temperature APRM catalysts—to the outstanding ability of α-MoC to induce water dissociation, and to the fact that platinum and α-MoC act in synergy to activate methanol and then to reform it.last_img read more

A functional prototype nonvolatile ferroelectric domain wall memory

first_img First flexible memory device using oxide ferroelectric material A ferroelectric domain wall is a topological structure with defects that separate regions of uniform polarization—as the researchers note, the discovery of conductivity in such structures has led to a new field of science called “domain wall nanoelectronics.” The science essentially covers the wall as a means of storing information—a binary state can be read or written in such memory devices by inducing or removing a conductive wall. They can also be read non-destructively, just as with conventional memory technology. In this new effort, the researchers created a prototype using nanofabricated electrodes that they designed for use specifically with their wall memory, which, they note, was scalable to below 100nm.Ferroelectric materials are similar to ferromagnetic materials in that they have a permanent dipole moment. The obvious difference is the former moment is electrical while the latter is magnetic, which means that ferroelectric materials can be oriented by exposure to an electric versus a magnetic field. Like ferromagnetics, they have domain walls—but they are much smaller, allowing for the creation of much smaller memory materials, typically in the 1nm range. This makes them smaller by a factor of 10 than current silicon CMOS structures. Creating a memory device involved building a structure in which it was possible to create and destroy walls using electrical pulses. They built their memory structures by using nanolithography to create Pt/Ti patterns on thin film BiFeO3 which could be used as electrodes.The researchers report that wall materials such as theirs are able to store data on multiple levels because of their unique resistance states, which allows for tuning. They also note that a device using such memory requires less energy to store information than conventional memory. Memory for their prototype could be read at voltages less than 3 V and the team claims it also has a reasonably high OFF-ON ratio of approximately 103 and that it is robust. © 2017 Phys.org Journal information: Science Advances Citation: A functional prototype nonvolatile ferroelectric domain wall memory (2017, June 26) retrieved 18 August 2019 from https://phys.org/news/2017-06-functional-prototype-nonvolatile-ferroelectric-domain.html More information: Nonvolatile ferroelectric domain wall memory, Science Advances  23 Jun 2017: Vol. 3, no. 6, e1700512, DOI: 10.1126/sciadv.1700512AbstractFerroelectric domain walls are atomically sharp topological defects that separate regions of uniform polarization. The discovery of electrical conductivity in specific types of walls gave rise to “domain wall nanoelectronics,” a technology in which the wall (rather than the domain) stores information. This paradigm shift critically hinges on precise nanoengineering of reconfigurable domain walls. Using specially designed nanofabricated electrodes and scanning probe techniques, we demonstrate a prototype nonvolatile ferroelectric domain wall memory, scalable to below 100 nm, whose binary state is defined by the existence or absence of conductive walls. The device can be read out nondestructively at moderate voltages (<3 V), exhibits relatively high OFF-ON ratios (~103) with excellent endurance and retention characteristics, and has multilevel data storage capacity. Our work thus constitutes an important step toward integrated nanoscale ferroelectric domain wall memory devices.center_img (Phys.org)—A team of researchers from institutions in Australia, the U.S. and China has developed a functional prototype nonvolatile ferroelectric domain wall memory. In their paper published on the open access site Science Advances, the group describes their prototype, its properties and how well it worked. Experimental geometry and details of the ferroelectric switching process. (A) Schematic of the experimental geometry for investigation of the prototype FEDW device. E-field, electric field. (B) Topographic image of the actual e-beam–fabricated device on the surface of the BFO thin film acquired over the dashed square-frame area, as shown in (A). (C) Schematic showing two polarization variants separated by 71° between the neighboring unit cells (purple, Bi atom; red, Fe atom). Credit: Science Advances  23 Jun 2017: Vol. 3, no. 6, e1700512, DOI: 10.1126/sciadv.1700512 Explore further This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.last_img read more

New study sheds some light on the lowviscosity layer in the Cascadia

first_imgA team of researchers with the University of Ottawa has used teleseismic data from on- and off-shore sensors to learn more about the low-viscosity layer (LVL) present in a northern part of the Cascadia subduction zone. In their paper published on the open access site Science Advances, the team reports on what they learned. Citation: New study sheds some light on the low-viscosity layer in the Cascadia subduction zone (2018, March 8) retrieved 18 August 2019 from https://phys.org/news/2018-03-low-viscosity-layer-cascadia-subduction-zone.html Explore further This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only. A tectonic plate originating beneath the Pacific Ocean (off the northwest coast of the U.S. and southwest part of Canada) is slowly being pushed under the North American plate, forming the Cascadia subduction zone. Because of the instability in the area, earthquakes occur. But there has not been a major quake in the region since 1700, making geologists nervous as they try to predict when the next one might be. Complicating this work is a relative lack of seismic activity in the seismogenic zone. In this new effort, the researchers took a new approach to studying the zone—they used teleseismic data from sensors both onshore and offshore to study the low-viscosity layer.An LVL is a part of the subduction zone containing fluids that have been released from a subducting oceanic plate. Researchers study LVLs because they offer a means for studying subduction zones without using data from the seismogenic zone—seismic waves travel through them more slowly than other parts of the zone. The new teleseismic data offered a new perspective on the LVL that exists in the northern part of the Cascadia subduction zone. The researchers were able to see that the LVL does not extend into the locked zone, which is actually a good thing. Its presence would likely buffer Portland and Seattle during a major shift, resulting in less of an earthquake impact. The placement of the LVL, the team reports, is somewhat of a surprise, but it also helps explain a previously puzzling gap between the edges of the fault zone. The researchers also found that the LVL is very thick in the deeper parts of the interface between the two plates, suggesting it is well developed. © 2018 Phys.orgcenter_img Seafloor sediments appear to enhance earthquake and tsunami danger in Pacific Northwest More information: Pascal Audet et al. Fluid pressure and shear zone development over the locked to slow slip region in Cascadia, Science Advances (2018). DOI: 10.1126/sciadv.aar2982AbstractAt subduction zones, the deep seismogenic transition from a frictionally locked to steady sliding interface is thought to primarily reflect changes in rheology and fluid pressure and is generally located offshore. The development of fluid pressures within a seismic low-velocity layer (LVL) remains poorly constrained due to the scarcity of dense, continuous onshore-offshore broadband seismic arrays. We image the subducting Juan de Fuca oceanic plate in northern Cascadia using onshore-offshore teleseismic data and find that the signature of the LVL does not extend into the locked zone. Thickening of the LVL down dip where viscous creep dominates suggests that it represents the development of an increasingly thick and fluid-rich shear zone, enabled by fluid production in subducting oceanic crust. Further down dip, episodic tremor, and slip events occur in a region inferred to have locally increased fluid pressures, in agreement with electrical resistivity structure and numerical models of fault slip. Journal information: Science Advances Map of the Cascadia forearc region. Credit: Science Advances (2018). DOI: 10.1126/sciadv.aar2982last_img read more

Free trade zones in Belarus

first_imgThere are six free economic zones in Belarus — Brest, Vitebsk, Gomel-Raton, Grodnoinvest, Minsk and Mogilev. Foreign investors in FEZ subject to the system of state guarantees investment protection. For instance, FEZ Brest includes three sections — Kozlovichi, Airport, as well as the territory of the largest Brest enterprises located within the city limits. The main priorities are the creation of enterprises with high technology in the pharmaceutical, automotive, electronics, engineering and other industries.Vitebsk consists of 12 separate areas, called sectors. FEZ Gomel-Roton is located at the intersection of three international highways — Road Transport Corridor E9 – Helsinki – St. Petersburg – Gomel – Kiev – Sofia – Athens; international motorway Brest – Gomel – Bryansk – Voronezh – Rostov-on-Don and the international highway.last_img read more

Art comes to you or doesnt

first_imgWhen did you start painting? How has the journey been so far?I started when I was four or five years old, as soon as I started understanding art. I used to borrow ideas from nature and sketch.What are the inspirations behind your paintings?I’m always attracted to soft, natural, delicate tones like you see in buds, butterflies, flowers, feathers and rivers. Working with dry pastels on canvas, my inspiration comes from the natural environment.My works are mostly in small formats, in mixed media, where use of pastel shows through in soft, soothing, serene hues. My work displays peace and tranquility in different forms. The abstract work is a display of life’s many moments which I cherish. Also Read – ‘Playing Jojo was emotionally exhausting’You have exhibited in various parts of the country. What response do you find at such places?I have exhibited at lots of places both nationally and internationally like various parts of India, South Korea, Singapore  and my experience everywhere has been enriching. People have really appreciated my art and accepted my work with reverence.What is the inspiration behind the current exhibition?Behind ‘40 works of Hemant Rao’, are my different and varied experiences in life along with nature that keep on giving me new ideas and new dimensions. Also Read – Leslie doing new comedy special with NetflixBeing a self-taught artist, what are the ups and downs you have been through?I believe art comes naturally to you. I was born an artist. I really don’t feel any need to get formally trained by any institute. But yes, I would like to give credit to Prayag Shukla, my mentor, who has always shown me a different and unusual path that helps me.Any other exhibition that you are planning?I’m at the planning stage for my next works which are in 3D.What are your expectatiosn from art lovers?I would like to request all art lovers to keep on showing their love and support for young talents like me as their support acts as a great motivator.last_img read more

Green flavours

first_imgGet ready to experience the authentic signatures dishes of North India and Pakistan as a new menu was introduced at Singh Sahib, Eros Hotel, Nehru Place. Along with the magical flavours of undivided Punjab, guests can now enjoy the Pakistani flavours along with live evening ghazals all month long. You can enjoy the aroma of fragrant spices that waft from the live kitchen as the expert chefs create authentic specialities such as raan peshawari, bhatti da murg and Amritsari macchi, meat beliram, rara murgh, chargah and many more.For the vegetarians, they have introduced an all-new Green Menu with a range of vegetarian delicacies like potohari challi kebab, bharta rawalpindi, dhingri kofta, paneer makai and more. For the get-togethers, three pre-set menus are introduces – khaas shakahari dawaat, sahib dawaat and sahib khaas dawaat, tailor-made for a special gathering with a choice of appetizers, soup, main course.last_img read more